
XLMATH.XLL

A Dynamic Link Library for Microsoft Excel 4.0
Version 2.2

XLMATH is a standalone dynamic link library (XLL) for Microsoft Excel 4.0 and
contains custom functions and commands for diagonalizing a real symmetric matrix,
curve fitting functions including nth order polynomial fitting, cubic spline functions
fitting and data smoothing via Savitsky Golay or by weighted averages. The functions
and commands are described and illustrated in the workbook XLMATH.XLW.
Files

The files included in the archive are:
Executable files:
README.1ST Instructions for loading XLMATH and associated files
XLMATH.XLL The executable XLL
XLMATH.HLP The help file - must be in Excel subdirectory
XLMATH.XLW Demonstration workbook: custom functions and dialog commands
SOURCE.ZIP Selected source files
Excel Usage

XLMATH contains both custom command and function versions most of its tools. The
command versions can be invoked from the Xlmath menu and are easily understood and
used. Most of the custom functions added by XLMATH.XLL return arrays of data to
Excel. If you are not familiar with Excel's array formula usage, please read the section on
array formulae in the Excel User's Guide . After opening XLMATH.XLL, the custom
functions can be found under the category "XLMath Add-In". Always open the XLL first
using the Excel File Open... command.
Commands or Functions?
Curve fitting and diagonalizing can be performed either by invoking a command and
entering the approriate ranges and values into dialog boxes, or by entering custom
function definitions found under the category Xlmath-Add-In. Commands are easier to
use but if you have frequently changing input data, you may prefer the custom function
versions.
Column or Row Ranges?
With the exception of Diagonalize, the custom functions in XLMATH all require the
input of one dimensional data vectors. These data vectors can be entered into the sheet as
either column vectors (N x 1) or row vectors (1 x N) and XLMATH will recognize
their shape. With the exception of diagonalize and CubicSplines, the array formulae
should be entered into the same type of vector. For example, in the smoothing routines, if

XLMATH20

1
Monday, 08 March, 1993

the data is a column vector (Nx1), then the array formula should also be entered into a
column vector (Nx1). If the data is a row vector (1xN), then the array formulae should be
entered in a row vector (1xN). The curvefitting routine PolyCurvefit will identify the
input as either a column or row vector. If the input is in the form of a column vector
(Nx1), then the array formulae must be entered in an (N x 3) array. If the input is in the
form of a row vector, then the array formulae must be entered into a (3 x N) array. For
CubicSplines, the input can be in the form of column or row vectors, but the array
formulae must always be entered into a rectangular array of dimension (N x 4) where N is
the number of data points. For CubicSplines, it is more convenient to enter the variables
into column vectors (Nx1) and then enter the array function into an N x 4 array.
Custom Command and Function Descriptions
The following is a brief description of the custom functions added by XLMATH.XLL
The user should consult the worksheet XLMATH.XLS for detailed usage of these
functions.
Diagonalize(SymMat)
This function returns the eigenvectors and eigenvalues of a real symmetric matrix. The
input must be a real symmetric matrix (square) but only the top half is used and hence
needs to be defined. The values are returned in output which is an (N+1) x N array where
the last row contains the eigenvalues. In the dialog boxes, Input refers to the input real
symmetric matrix range and Output referes to the (N+1)xN output range.
PolyCurveFit(Xvar, Yvar, Order)
Polynomial curve fitting results in a single polynomial equation of order m which is the
least squares approximation of the observed data.

y = C0 + C1 x X + C2 x X2 + C3 x X3 ... + Cm x Xm

Order is the order m of the fitting, i.e. 1 for a linear fit, 2 for a quadratic fit and etc. The
order must be one less than the number of variables.
Xvar is a column or row vector of N independent variables (X).
Yvar is a column or row vector of N dependent variables (Y).
Xvar and Yvar must be both either row or column vectors. Using one as a row vector and
the other as a column vector is not supported. It is recommended that both variables be
entered as column vectors.
The output or the function PolyCurveFit must be entered into an N x 3 array if the input
is in the form of a column vector or a 3 x N array if the input is in the form of a row
vector. Assuming that both Xvar and Yvar are column vectors and the array formulae
have been entered into a N x 3 array, then the first column of the return array contains the
estimated Y values, the second row contains the residuals (differences between calculated
and estimated y-values). The third column contains in the first (order + 1) rows, the
polynomial coefficients. If fitted to 2nd order, the first three rows contain a0, a1, & a2.
The following values are returned directly below the coefficients,

XLMATH20

2
Monday, 08 March, 1993

coefsig - a vector of dimension (order+1). Coefsig are the standard errors of coefficient
estimates. The values are stored in the same order as the polynomial coefficients.
see - the standard error of the estimate
rsqrval - the r squared value - the sample correleation coefficient
cferror - returns 1 if the curve fit is singular, otherwise 0.
CubicSplines(Xvar, Yvar)
The CubicSplines() function fits a discrete set of cubic polynomial equations to a discrete
set of data. Y-values may be interpolated for points between the original data points by
applying the calculated cubic equations. The arguments to the function are;
Xvar - the N independent variables (X).
Yvar - the N dependent variables (Y).
Both variables can be entered as row or column vectors. However, the function returns
and N x 4 array of coefficients and hence it is recommended that the variables be entered
as column vectors.
CalcSpline(Xvar, Coef, X)
The function CaclSpline returns an interpolated y-value for the argument X. The
argument Xvar is the column array of independent variables passed to CubicSplines()
above. The argument Coef is the N x 4 array of cubic spline coefficients returned by
CubicSplines() above. There is no dialog box version of this custom function.
SmoothSG(Data, SmoothNum, DerivNam)
This function performs a Savitsky - Golay smoothing and differentiation of data (see
Savitsky, A. and Golay, J., Analytical Chemistry 36 (1964), p. 1627). The arguments are
as follows;
Data - a column or row vector of the data to be smoothed. If the data is a column vector,
then the function must be entered into a column vector and vice versa if the data is a row
vector.
SmoothNum - holds the integer degree of smoothing
1 = 5 point smooth
2 = 7 point smooth
3 = 9 point smooth
4 = 11 point smooth
5 = 13 point smooth
DerivNum - holds the integer derivative degree
0 = smooth data only
1 = first derivative
2 = second derivative
The function returns a column or row vector of smoothed data.
SmoothWT(Data, Weights, Divisor)
This function is used to reduce the noise in a sample. The technique uses convolution
where each data point is recalculated as a weighted average of its original value and
surrounding data points. The arguments are as follows;

XLMATH20

3
Monday, 08 March, 1993

Data - the data points to be smoothed. The data may be entered into a column or row
vector.
Weights - the weights used in the convolution process
The function returns a column or row vector of smoothed data points.
MODensity
The charge and bond order matrix in simple Huckel calculations is defined as a matrix
multiplication of C(T) x Occ x C where C is the matrix of coefficients and Occ is a
matrix of occupancies. Although a multiplication of this form can be done in several steps
with Excel 4.0, it is easier to use the custom function and calculate all of the charges and
bond orders via MODensity. While it would be a simple task to create a command for
MODensity, the author left it undone in the desire to force students to use the array
method of function entry.
CustomFit
In data fitting, one typically has m data values y1, y2, ... ym which have been sampled for
values x1, x2, ... xm of some independent variable x. It is then desired to fit a function
f(x,p) which has n adjustable parameters, to be chosen so that the function best fits the
data. The residuals are given by
ri(p) = f(xi,p)-yi i = 1,2,...m
and a least squares solution is sought by minimizing S(p) which is the sum of the squares
of the residuals . CustomFit uses the Levenberg-Marquardt method to solve for the
solution to S(p) by stepping towards the solution via a sequence of corrections based on
the solution to the equation
(G + aI)s = -g
where G is a matrix of second derivatives, g is a matrix of first derivatives, I is a unit
matrix and a is a damping factor. The Levenburg-Marquardt method is also characterized
by the scaling of the matrix G by replacing it with a scaled matrix C where
Cij = Gij/((Gii)1/2.(Gjj)1/2) or C = D-1GD-1.
The solution for the step s is then given by
s = -D-1(G + aI)-1D-1g
where D-1 is a diagonal matrix and (G + aI)-1 is determined from the eigenvalue
decomposition as C = A.L.AT where L is a diagonal matrix of eigenvalues and A is a
matrix of eigenvectors. If none of the eigenvalues are zero, then the inverse of C exists
and is defined as C-1 = A.L-1AT.

Pragmatically, iterations must also be halted when no significant change is obtained in
two successive choices of the parameters. This condition will be encountered when the
model nonlinear equation has a parameter redundancy. For reference see Marquardt,
D.M. "An algorithm for Least-Squares Estimation of Nonlinear Parameters", J. Soc.
Indust. Appl. Math., 11, 431-441, 1963

As a general rule, "best-fitting" is obtained only when

XLMATH20

4
Monday, 08 March, 1993

1. termination occurs before the maximum number of iterations (50)
2. S is minimal
3. there is no parameter redundancy indicated by the eigenvalues near zero
4. scale vectors are finite

To use CustomFit, the user must supply a user written macro as illustrated below for the
function y = ax/(b+x).

USERMACRO
=RESULT(1)
=ARGUMENT("kIndex",1)
=ARGUMENT("rgP",64)
=ARGUMENT("kX",1)
=SET.VALUE(D20:E20,rgP)

Ret2 =D20*nX/(E20+kX)
=RETURN(Ret2)

The macro takes three arguments, kIndex - the index of the k'th data point; rgP - the array
of parameters; kX - the value of the k'th independent variable. The macro must return a
value for the calculated y (dependent variable). In addition, the name "CustomFitMacro"
must be defined as "USERMACRO" in the worksheet. In this example, the user would
select the define names command and define the name "CustomFitMacro" as
"=MACRO1.XLM!USERMACRO". The name USERMACRO must also be a defined
name in the macro sheet. The index k is not normally required but may be used if direct
indexing of the dependent variable is required or preferred.
An Alternative
Most of what is accomplished by using CustomFit can also be done more simply by using
the native Excel Solver command. The net effect of CustomFit is to minimize the sum of
the squares of the deviations between experimental and calculated data points. Solver is
quite capable of performing this minimization if you provide it with the array of
adjustable parameters and the location of the sum of squares. This alternative is explored
fully in the worksheet XLMCFIT.XLS and the user is referred to that worksheet for
further details.

Development Notes
Xlmath v1.0
Xlmath v1.0 is described by the author in an article published in the Journal of Chemical
Education (2nd quarter of 1993). The intent of the author in this article and in Xlmath
was to make persons aware of the ease with which DLL's could be written for Excel and
to convince educators and others to attempt to write their own DLL's and to abandon
stand-alone programs. Since the writing of the paper and the development of v1.0,

XLMATH20

5
Monday, 08 March, 1993

Microsoft published the Excel API (Microsoft Press, ISBN# 1-55615-521-2). The
publishing of the API made it even easier to write standalone DLL's and made it possible
to interface the custom functions and commands without the need for any macro
language. Since the publication of the API made v1.0 obsolete, the author decided to
revise v1.0 and re-write v2.0 to conform to the API.
Differences between v2.2 and v2.1
1. If you selected an Xlmath menu item while an embedded chart was selected on

the worksheet, the whole system crashed. An additional check is now made to
ensure that a cell or range of cells is selected on the worksheet. If this is not so,
then an error message is displayed and the Xlmath dialog is not executed.

Differences between v2.1 and v2.0
1. The Xlmath menu did not appear if you were using a a language variant of Excel

that did not have the command "Help". This has been corrected and the Xlmath
menu will appear regardless of language. Hpoefully, it will also run on all
language variants of Excel.

2. There was a memory leak in the routines performing SG and WT smoothing. If
you used these routines repeatedly, in previous versions, each use would increase
the amount of memory used by Xlmath. You likely have not noticed this unless
you inspected the memory usage with Heapwalker.

3. The behaviour of the memory allocation schemes (malloc() etc) in Microsoft
C/C++ version 7.0 has become more compatible with Windows 3.1. Hence the
memory allocation program SMRTHEAP.DLL has been eliminated and
_fmalloc() and _ffree() substituted where required (see MS Developers Network:
Allocating Memory the Old-Fashioned Way: _fmalloc and Applications for
Windows[TM], 1992, Dale Rogerson, Microsoft Corporation). Xlmath is now a
large model DLL. It is still easier to debug your program with SMARTHEAP and
hence I have left the SMARTHEAP statements in the code but they are now
invoked only when specified in the makefile. If you have previously installed v2.0
and you are not using another program which uses SMARTHEAP, you may now
delete the file SMRTHEAP.DLL from your hard disk.

Differences between v2.0 and v1.0
There are two fundamental difference between v1.0 and v2.0. XLMATH v2.0 includes
both custom functions and commands. The commands are invoked by selecting the menu
Xlmath and completing the dialog box prompts. XLMATH v2.0 also uses the Excel API
to both register the custom functions and commands and to run the dialog box routines.
The Excel API eliminates the need for a macro sheet. Since Excel v4.0 has its own
version of Frequency(), the XLMATH version has been deleted.

Source Code
The source code included in XLMATH v2.2 includes the source required to write your
own XLL. It does not include all of the source code required to re-compile Xlmath 2.2.

XLMATH20

6
Monday, 08 March, 1993

For personal reasons, the author will not release the source code for the actual operational
functions. You don't need it since you have a fully executable version of these functions.
In addition, the source code for the curve fitting and data smoothing routines in v2.2 are a
modified form of the Science & Engineering Tools routines sold by Quinn-Curtis. This
source is copyrighted by and belongs to Quinn-Curtis but may be purchased from them at
35 Highland Circle, Needham, MA 02194 USA.
Memory Management
For those of you who have read my article in J.Chem.Ed., a thousand apologies. Memory
management has been a most difficult aspect of Windows(TM) and all of the difficulty
arises from the "real" mode requirements that pre-date Windows 3.0. Finally, I have got it
straight and the straight answer is that memory management is very simple. Just do it as
you did before. The following is a quote from an article in the Microsoft Devoper's
Network CD by Dale Rogerson (The C/C++ Compiler Learns New Tricks)
1. Use the LARGE model
2. Use malloc().

Now what could be more simple? The source code in Xlmath contains a lot of casts to
ensure that the pointers are FAR pointers. You don't need these casts because the large
model compiler automatically casts all data to FAR. It was just too much work to remove
them so as the saying goes "do as I say and not as I did". Be particularly careful not to use
the Windows definitions of near pointers such as NPSTR. These definitions use the
keyword "__near" in their definition and the compiler cannot convert this to a __far
pointer. Good luck with your own DLL's.
Freeware
Xlmath is freeware. This means that you can freely copy it, use it, modify it, and give
copies to all your friends (as long you give them all of the unmodified files that you
received). However, if you wish to modify and/or use the source code included, please
add a note indicating that portions of your program are copyrighted by Roy Kari. The
best place to add this note is in your About Box.

THE SOFTWARE AUTHOR (ROY KARI) DISCLAIMS ALL WARRANTIES, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO
THE PRODUCT. SHOULD THE PROGRAM PROVE DEFECTIVE, THE USER ASSUMES THE
RISK OF PAYING THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR
CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT
WILL THE AUTHOR BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING
WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE OR THE INABILITY TO USE THIS PRODUCT EVEN IF THE AUTHOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

If you do encounter problems with Xlmath, or if you think of a way to improve it feel

XLMATH20

7
Monday, 08 March, 1993

free to contact me.

Although I don't want cash for Xlmath, I am interested in hearing from people who use it.
To this end, please send a note via EMAIL or a fax to:

Roy Kari
Department of Chemistry & Biochemistry
Laurentian University
Sudbury, Ont.
Canada
P3E 2C6

fax: (705) 675-4844
Internet: "ROY@NICKEL.LAURENTIAN.CA"

XLMATH20

8
Monday, 08 March, 1993

